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Abstract

Unsteady rotor wake interactions with the empennage, tail

boom, and other aerodynamic surfaces have a significant

influence on the aerodynamic performance of the

helicopter, ride quality, and vibration. A Computational

Fluid Dynamic (CFD) method for computing the

aerodynamic interaction between an interacting vortex

wake and the viscous flow about arbitrary two-
dimensional bodies has been developed to address this

helicopter problem. The vorficity and flow field velocities

are calculated on a body-fitted computational mesh using

an uncoupled iterative solution. The interacting vortex

wake is repzesented by an array of discrete vortices which,

in turn, are represented by a finite-core model. The

evolution of the interacting vortex wake is calculated by
Lagrangian techniques. The flow around circular and

elliptic cylinders in the absence of an interacting vortex

wake has been calculated. These results compare very
well with other numerical results and with results obtained

from experiment and thereby demonswate the accuracy of
the viscous solution. The interaction of a simulated rotor

wake with the flow about two-dimensional bodies,

representing cross-sections of fuselage components, has

been calculated to address the vortex-interaction problem.
The vortex interaction was calculated for the flow about a

circular and an elliptic cylinder at 45 and 90 degrees

incidence. The results demonstrate the significant
variation in lift and drag on the two-dimensional bodies

during the vortex interaction.
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= time step index, shedding frequency

= wansformation parameter

= pressure

= transformationparameter

= radial variable

ffi vortex core radius

= vortex core outer radius

= Reynolds number, U** I/v

= Su-ouhal number, nt/U..

ffi time

= free stream velocity

= velocity component in x-direction

= velocity component in y-diroction

= Cartesian coordinate

ffi Cartesian e(xm_nate

ffi incidence angle

ffi Iransformation parameter

= incremental value

= circulation

= coordinate in Iransfonnedspace

= kinematicviscosity

ffi coordinate in transformed space

= vorticity



Subscripts

vw = interacting vortex wake quantity

o = reference value

I = value at body surface

= value at far field

Introduction

The numerical prediction for the strong interaction
between vortical wakes and the viscous flow field about

bodies is of c,msiderable importance in the design analysis
of rotorcrafL The flow field surrounding a heficopter

configuration is highly complex due to the lack of
symmetry and the unsteady aspects of the flow. This
unsteady, asymmetric flow field is complicated further in
that the shed wake from the rotor blades interacts with

other components of the aircraft (e.g., rotor blades,

fuselage, tail boom, and tail rotor). In general, these are
strong interactions in which the rotor wake flows onto or
passes very close to the other components of the aircrafL
Vortex interactions occur at many flight attitudes (e.g.,
hover, descent, and low speed flight) and therefore have

profound effects on the overall aerodynamic efficiency of
the rotorcrafL The effects of the vortex interactions are
realized as increased vibratory loading on the fuselage,

decreased payload capabilities, and increased noise.

Because of the complexity of the problem and the limi-
tatious of the computer in modeling the retire flow field,
the research effort addressing vortex interaction for
rotorcraft has developed in two directions: blade-vortex
interaction and rotor-fuselage interaction. Most of the
vortex-interactiou research for rotorcraft has been directed

toward blade-vortex interaction in forward flight and,
therefore, conceawa_d on the flow field near the rotor tip
on the advancing side of the rotor. The flow field in this

region is transonic and the rotor blade is at near zero
incidence. Navier-Stokes calculations of blade-vortex

interaction are being conducted with increasing efficiency
(Refs 1, 2). These calculations model limited separation,
due to the incidence of the blade and flow velocity. In
addition, the blade-vortex interaction is generally not a
direct interaction between the rotor blade and the rotor

wake, but a very close passage. Aircraft descent is the

exception when the rotor wake is convected through the
rotor and directly interacts with the rotor blades. The flow
beneath the rotor is quite different, with rotor-fuselage

interactions present over a large portion of the fuselage
length.

The rotor-fuselage interaction has received far less
attention than that for the blade-vortex interaction. These
interactions, which exist for most flight configurations, me

caused by the impingement of the convected rotor wake
onto the fuselase components. An overview of the rotor-
fuselage interactional aerodynamics can be found in
Ref. 3. In contrast to the blade-vortex interaction, the flow

field of the rotor-fuselage interaction is subsonic, highly
separated"and vortex dominated. Portions of the fuselage
are immersed in the rotor downwash, which is an unsteady

flow with very large velocity gradients just inboard of the
rotor tip. The fuselage is not streamlined in the direction
of the downwash; as a consequence, separated wakes form
at the smface owing to viscosity. These separated wakes

me very unsteady due to the interaction of the impinging
rotor wake. The result of the vortex interaction is the cou-

pling of the vorticity produced at the surface of the fuse-
lage with the interacting vortex wake. The flow becomes
increasingly unsteady due to the mutual convection
between the interacting vortex wake and the surface

vorticity. The resulting flow field is very complex, and
therefore difficult to model and predict.

The analysis of rotor-fuselage interactions, as well as
blade-vortex interactions, is complicated further by

computer memory limitations. Currently available com-
puter memory is inadequate for the three-dimensional
meshes necessary to model the flow field surrounding a
representative rotorcraft. Therefore, the computational
mesh enclosing a body is generally concentrated near the
body to resolve the flow at that location and considerably
less dense away from the body. Owing to numerical
diffusion, the coarse mesh away from the body is

inadequate for accurate predictions for the evolution of the
rotor wake surroundinga rotorcraft In order to calculate
the rotor-fuselage interaction, a method is needed to
accurately predict both the rotor wake evolution away
from the body on a coarse mesh and the separated viscous
flow near the body surface.

As a first step toward analyzing the full three-dimensional
rigor-fuselage interaction, this paper presents a method to
calculate the unsteady, two-dimensional, incompressible
interaction of an interacting vortex wake with the
separated flow about bodies. The method solves the
velocity/vorticity formulation of the Navier-Stokes
equations. The computational mesh is concentrated near
the body surface to resolve the boundary layer and is
increasingly coarse further from the body. The interacting
vortex wake is modeled as an array of finite-core vortices

(Refs 4, 5). The core radius is variable and is independent
of the mesh spacing. The fmite-core model eliminates the
numerical diffusion associated with the coarse mesh

spacing away horn the body and provides for the accurate
prediction of the rotor wake evolution. The finite-core
vortex model is accurate away from the body where the
flow field is inviscid and dominated by the rotor wake.
However, closer to the body, the flow is viscous and the
convection of the rotor wake can no longer be considered

inviscid. In this region, the interacting vortex wake
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interactswith the viscous separated wake and can no
longer be modeled by the f'mite-core vortex model. The
vortex core is acted upon by shearing forces which will
contort and possibly separate the vortex core into several
separate vortices. As the vortex approaches the body, the
finite-core vortex is distributed to the computational mesh
and allowed to convect as part of the viscous solution. In
this way the evolution of the rotor wake away from the
body and the vortex interaction at the body are accurately
simulated. In addition the present method for two-
dimensional calculations is directly extendable to three-
dimensional analysis.

Results for the viscous flow about two-dimensional bodies

have been calculated with and without an interacting
vortex wake. The flow around circular and elliptic
cylinders in the absence of an interacting vortex wake has
been calculated in order to compare results of the current
method with those of other numerical studies and

experimental investigations. The intent of this paper is to
provide comparisons between the flow about bodies with

and without the presence of an interacting vortex wake.
The simulated flow represents the downwash beneath a

rotor. In this two-dimensional analysis, the body
represents a cross-section of the tail boom or fuselage
component, which may be circular or elliptical in
geometry.

Problem Formulation

The vortex interaction problem is modeled by the

velocity/vorticity form of the unsteady incompressible
Navier-Stokes equations. The nondimensional governing
equations in Cartesian coordinates are written: for the
velocity,

V2u ffi - _)O_y, V2v = _O)_x (la,b)

and for the vorticity,

+ _(um)/Bx+ i)(vo))_y= V2m/Re

where V2 = 02()fOx2 + _2()F0y2

(2)

where (x,y) are the Cartesian coordinates, Re is the
Reynolds number, and t is the time. The variables (u,v) are
theCartesiancomponentsof thevelocityand ca,the

vorticity,isdefinedby

m = bvfOx- Bu/_y (3)

The noodimensional variables are written

x = xT1,y = yTl.u = u'/Uo.,v = v'/U.

m = c¢/(uoo/l),t = t'/(I/uo_).Re= u.t/v

where

I = the body length

Re = Reynoldsnumberbasedon bodylength

U_ = free stream velocity

v = kinematic viscosity

A body fitted computational mesh is used in the finite-
difference solution to the governing equations. A
hyperbolic mesh generator was used to generate the
computational mesh. Ref 6. A portion of the computa-
tional mesh is shown in Fig 1. The solution to the flow is
obtained by solving the transformed Cartesian equations
in the computational domain (_.TI).

The generaltransformationexpressioncanbe written,via
thechainrule,as

3()/0{= _{(3()fOx)+_I_0()/3y),and

B( )/'_ = _/_0()/_x) +_Yf_ O()/by), or

The derivatives_()_x, and _()/_yaresolvedforby

invertingthecoefficientmatrixintheaboveequation.The
Cartesian derivatives become

aOfdyj=

where J is the Jacobian of the transformation. This relation

is used to transform the derivatives of the governing
equations to the generalized curvilinear coordinates. In the
computational domain, the governing equations become

for rite u-velocity component,

bq2(O2ufO_2) - 215(02u_) + h_2(O2u/_ 2)

+ P_J_ + Q_u/'_

= -J[x_(_O.)f0rl) - x.l.l(@_/_)], (4a)

forthe v-velocitycomponent,



h_202v_2 ) . 2_a2v_) + h{2(a2,,_2)

+ P_v/_ + Qavf'_

= -J[y1](o_(_) - yp=(_)/_)], (4b)

and for the vorticity,

cot + [y1](Ouco¢_)- y_(Oum/'_l)]/J

+ [x_Ovm/_) -x1](avo_i)la

= [h_2(82at_ 2) - 213(b2atcO_brl) + l_2(O2at/'_ 2)

+ paag'_ + Q_0_I/(ReJ 2) (5)

where (_,1]) are the _ansformed coordinates,h_ and h_
are the vector lengths,

h_ = (x_ 2 + y_2)1/2 and

brl= (xn2+ y112)I/2

with

p= x_x_+y{y1],

J = x_y1] - x1]y_,

P= +hn ,m)

- x_(h_12y_- 2l_Y_q + l_q2Y1]1])]/_,

Q = [-yTl(h_12x_ - 2_x_ + l_q2XTl1])

+ x1](lhq2y_ - 2_y_1]+ hT12Y111])]/J,

and

x_= ax/_,x1]= o_x_, yp,= by/'_,y1]= ay/bq,

x_ =O2x/_ 2, x111]= B2x/_ 2, y_= a2yFd_2,

y111]= B2y[bq2

The boundary conditionsforEqs 4a,4b, and 5 atthebody

surfacearecalculatedfrom theno-slipconditionas

u=0, v=0 (6)

and thedefinitionofvorticityforco,

0 = [y1]av[_ + Xl]_/'_]_ (7)

The boundary conditions at the far field boundary are

u = u._(a) (ga)

v = U.sin(a) (8b)

and

m = o (9)

in the potential flow region upstream of the body, i.e., for

_! 1 < 1] < v12 of Fig 1, with 11 increasing in the counter-
clockwisedirection.

In the region downstream of the body, the velocity at the

far field boundaryis calculated from Eqs 4a and 4b and

the vonici_y is calculatedfrom Eq 5 by consideringthe

inertiaterms only and neglecting the viscous terms.

Therefore,the vorticityat the far fieldboundary, for

I]2< I]< 1]max and 1]min< 1]< 111iscalculatedfrom

mi + [y1](OumlO_ - y_(buotFbrl)]/J

+ [x_Ovco/_) - x1]Ovcof_)]/J= 0. (10)

The surface pressure is obtained by integrating the tan-

gential component of the Navier-Stokes equation along
the surface of the body. At the surface

(11)

or

Pl = Po- l/Ref Ql[_ooq - h_12(_)/J]d_l

I]o

(12)

where Pl is the pressure on the surface and Po is the

reference pressure on the surface.

The reference pressure is obtained by the line integral of

the momentum equation from the far field boundary to the

body surface along a constant TI line. The reference

pressure is calculated from

po--r/ + y_v)[0t- (x_vm - y_uco)
4#

+ h_2Oo_cdn)- {3(ao.vaW(P_)]d_+ 1/2 (13)

The force components acting on the body are calculated

from the integration of the pressure and shearing forces at

the body surface. The force coefficients are
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cfx= -f ¢lmaX(plYTi) o'rl

Tlmin

O/Re) f Tlmax- (mlXTi)dq

rlmin

(14)

Numerical Method

The governing equations are solved by standard finite
difference methods on the body-fitted computational
mesh. The mesh is concentrated near the body to resolve
the flow at that location. The solution is started

impulsively from rest. The impulsive start is represented
by a potential velocity dislribution in the flow field with
zero velocity and a sheet of vordcity at the body surface.

Cfy= - f 'qmax(PlXTi) dTI

'qmin

- (I/Re)f Ylmax(c01YTl)d_l

_min

(15)

where¢oIisthevorticityatthebody.

The lift and dragcoefficientsare

C! = - Cfx[sin(c0)+ Cfy(COS(a)]

Cd = Cfx[COS(a))+ Cry(sin(a)]

(16)

(17)

wherea istheincidence ofthebody.

The interacting vortex wake is modeled as an array of
finite-core vortices. A third-order-polynomial distribution

of vorticity about each vortex position is used to represent
the vortex core, Ref 4. This dislAbution of voCdcity is

¢Ovw(r)= r I(2m'o2)[20/3(r3/ro 3)

- 10(r2/ro 2) + 10/3] (18)

where ¢oVW represents the vorticity of the interacting
vortex wake and ro is the outer radius of the vortex dis-
tribution. The core radius, re, the radial position of
maximum tangential velocity, is equal to 0.6376 ro for this
finite-core vortex model. The influence of the interacting
vorticalwake isincludedinEqs (4a)and(4b)throughthe

and 11componentsof -(¢ x {_vw).The interacting

vortexwake ismodeledasan arrayoffinite-corevortices

priortotheinteraction.However,when theinteracting

vortexwake islessthana prescribeddistancefromthe

body surface,thefinite-coremodelisno longeradequate

tomodel thewake.At thispoint,theinteractingvortex
wake is distributedto the computationalmesh and

includedas partoftheviscoussolution.Inthisway the

vortexinteractionismodeledbythegoverningequations.

The vorticity Wansport equation, Eq (5), is solved using an
alternating direction implicit method (ADD (Ref 7). The
ADI method solves the time-dependent vorticity transport
equation by separating the equation into two implicit
equations representing two fractional steps for a single
time step. This method results in the solution of scalar
Iridiagonal matrices for each fractional step.

The vorticity at the body surface in Eq (5) is calculated
from Eq (7), The velocity, Eqs (4a) and (4b), are cast in a
time-dependent form and solved by the ADI method. The
influence oftheinteractingvortexwake isincludedinthe

velocityequationsthroughthe negativecurlof the

vorticity distribution in the vortex core,
-(_x _'w). The vorticitydistributioninthevortexcoreis

defined inEq (18). Outsidetheouterradius _ vorticity is
zcro.

The solution to the time-dependent problemis calculated
by solvingthe vorticity transixm equation and the velocity
equations in an uncoupled manner. In this way, the
vorticity transport equation is solved first, after which
each velocity equation is solved in turn. This solution
procedure continues until a converged solution is obtained
for the current time step. The influence of the interacting

vortex wake is considered constant at each time step
during this iteration p_. At convergence, the vorticity,
flow field velocity, and interacting vortex wake position
are updated and the solution advances in time.

Computed Results

The method described above has been applied to the flow
about a circular cylinder and a 25% elliptic cylinder for a
Reynolds number of 3000. The computational grid is
dimensioned 81 x 241 withthe far field radius r_ = 20 for
all calculations. The time is nondimensionalized with

respect to the length of the body, in this case the diameter
of the cylinder. Therefore, a time interval of At = 1.0,
corresponds to the time required to travel a distance equal
to the cylinder diameter at a velocity equal to that of the
free stream velocity. The flow is calculated with and
without the presence of the interacting vortex wake.

The flows about a circular cylinder and an elliptic cylinder
at 45 and 90 degrees incidence are calculated without the

interacting vortex wake and are included for comparison



with the results of the votlex interaction. The incidence

angle is measured with respect to the vertical axis as
shown in Fig 1. Coml_sisons of the results for tbe cigular
cylinder without the interacting vortex wake can be found
in Ref 8. In this reference comparisons are made between

the results of the present method, the experimental results
of Ref 9 and the numerical results of Ref I0. In Ref 8,

comparisons me made between the current method and the
results of Ref 9 for the surface vorticity and were shown
to be excellent. In addition, the velocity profile in the

wake of the circular cylinder for the current method was

compared with the results of Refs 8 and 9. The
comparisons wac shown to be excellent.

The flow around a circular cylinder and a 25% elliptic

cylinder is calculated during the vortex interaction. The
flow about the elliptic cylinder during the vortex inter-
action was calculated for 45 and 90 degrees incidence

with respect to the vertical axis. The flow about the
elliptical cylinder at 45 degrees incidence was calculated
for a vortex strength of each vortex in the interacting
vortex wake of F = -I.0 and V = 1.0. The flow about the

circular cylinder and the elliptic cylinder at 90 degrees
incidence is only calculated for a vortex strength of each
vortex in the interacting vortex wake of V = 1.0 due to
symmetry. A vortex of strength F = -I represents a
clockwise rotation, while a vortex of strength V = 1

represents a counterclockwise rotation. These vortex
interactions were considered to evaluate general vortex
interactions and because no specific experimental data

representative of this flow exists.

No Vortex Interaction Case

Circular Cylinder. The variation of the lift and drag
coefficients with time for the flow about the circular

cylinder are shown in Fig 2. The effect of the secondary
vortices on the drag coefficient can be seen as the small
variations in the curve. The development of the separated
vortices remain symmetric up to t = 40.0 and, therefore,
the lift coefficient is zero. Comparisons between these
results and the results of othez investigations can be found

in Ref 8. The development of the streamlines of this flow
are shown in Fig 3. The figure demonstrates the
emergence of secondary vortices downstream of the
cylinder. These results will be compared with the results
during a vortex interaction presented latea"in this paper.

Elliptic Cylinder. The time evolution of the lift and drag
coefficients for the flow about a 25% elliptic cylinder are

shown in Fig 4 for 45 degrees incidence. For t greater than
t = 20.0, the Strouhal number (St = nl/U_) for this flow is

equal to 0.174 based on the projected body length. The
development in time of the streamlines around the elliptic
cylinder are shown in Fig 5 for 45 degrees incidence.

Variations in the lift and drag coefficients with time for
the flow around an elliptic cylinder at 90 degrees inci-
dence are shown in Fig 6. For this flow the separated
vortices do not remain symmetric and begin to oscillate at
t = 5.0. This is indicated in the nonzero lift coefficient and

is shown in the development of the streamlines in Fig 7.
The Strouhal number of this flow is equal to 0.214.

Vortex Interaction Case

The interaction of a vortex wake with the flow about a

circular cylinder and the flow about a 25% elliptic
cylinder are calculated. The interaction of the vortex wake
with the flow about the elliptic cylinder was calculated for
45 and 90 degrees incidence with respect to the free
stream.

Each interaction modeled the interacting vortex wake as

an array of vortices inserted into the flow field at constant
time intervals. This represents the periodic passage of a
rotor blade and the associated tip vortex, thus generating
the rotor's vortical wake structure. The orientation of the

interacting vortex wake with respect to the elliptic
cylinder is depicted in Fig 8. The free stream velocity is
directed along the negative y-axis and represents the
downwash due to a rotor. The vortex interaction was
started at t = 0.25, which was long enough after the

impulsive start as not to adversely affect the initial
development of the flow. At the start of the interaction,
five vortices are inserted in the flow field, as shown in Fig
8. Then, as the interaction proceeds, an additional vortex

is repeatedly inserted in the flow field at the uppermost
position, y = 6.5, at a constant time interval, At -- 1.0.
Therefore, the interacting vortex wake will represent the

periodic rotor wake during the entire vortex interaction.

Circular Cylinder, F = 1.0. The variation in the lift
coefficient and drag coefficient during the vortex inter-
action are shown in Figs 9 and 10, respectively. The
immediate effect of the interaction is to rapidly increase
the lift on the cylinder, Fig 9a, and slightly reduce the

drag, Fig 10a. This increased lift is the result of the
induced angle of attack of the cylinder due to the presence
of the interacting vortex wake. The lift on the cylinder in
the absence of the interacting vortex wake was zero. As

the interaction progresses, the effect of the periodic
passage of the intexacting vortex wake can be seen in the
variation in the lift on the cylinder. The lift coefficient

rises rapidly and then is reduced quickly in a sawtooth
pattern representative of a vortex interaction. The
separation in these lift peaks is approximately t = 1.0. This
corresponds to the natural convection of the vortices at the
free stream velocity, U_ ---1.0. The effect of the vortex
interaction on the drag, Fig 10, is less pronounced than

that for the lift, Fig 9. At t = 5.0 a strong vortex interaction
begins to occur.This strong vortex interaction is the result
of the initial vortex trajectory taken by the uppermost



vortexat thestartof theinteraction.Astheinteraction
starts,theuppermostvortextrajectoryisacteduponbythe
freesU'_un velocity and the influence of the vortices
beneath this position. Because there me no vortices above
this position, the vortex is convected in a direction down
and to the left. This is indicated in the vo_lex tr@ectories

of Fig 11 and the development of the streamlines during
the interaction, as shown in Fig 12. In Fig 12e at t = 5.0, a
pair of vortices can be seen just above the cyfinder
surface. The vortex to the left is the vortex that started at

the uppermost position and is being convected into the
cylinder due to the effect of the vortex to the right. After
the strong interaction, the interacting vmlex wake has
regained the the constant vortex separation similar to the

initial distribution of the interacting vortices. However,
the vortices of the interacting vortex wake are now
convected along a curved trajectory to the left of the initial
distribution, as shown in Fig I lb. The lift returns to the
sawtooth distribution prior to the smmg interaction, Fig 9,
t = 6.0. For time t > 20.0, a pattern of periodic vortex
shedding from the cylinder is shown in the lift, Fig 9b, and
the drag,Fig ]0b.

The vortex trajectories during the interaction are shown in
Fig 11. The U'ajectories of the five vortices initially
inserted into the flow at t = 0.25 are shown in Fig 1la and

the trajectories of the vortices insetted in the flow at y =
6.5 for the duration of the interaction are shown in Fig
1lb. The figure indicates that the initial vortex that starts
at the uppermost position, y = 6.5, is convected in a
direction down and to the left. It is this vortex that

generates the slrong vortex interaction because it is
convected nearest to the cylinder surface owing to the
effects of the other vortices. Once the initial vortex at the

uppermost position has passed the cylinder, the interacting
vortices of the vortex wake convect in a regular pattern
along the curved Irajectory of Fig 1lb.

Development of the streamlines for the vortex interaction

are shown in Fig 12. Initially, Fig 12a, t = 1.0, the vortices
are aligned in a pattern similar to that of the initial vortex
distribution. Later, at t : 2.0, Fig 12b, a vortex has been
distributed to the mesh and is shownasthelocalcurvature

in the streamlines just above the cylinder surface. At t ffi
4.0, the vortex that started at the uppermost position, y =
6.5, can be seen near the stagnation sU_amline and is
being convected at an increased rate as to overtake the
adjacent vortex. This increased descent is due to the
influence of the adjacent vortex. The vortex which started

at the uppermost position passes closest to the cylinder
surface at t ffi6.0 and is the closest approach of any vortex
during the vortex interaction. Later on, the vortices of the

interacting vortex wake are very regularly spaced and are
being convected along the curved trajectory toward the
cylinder surface.

Elliptic Cyfinder. Several vortex interactions are con-
sidered for flow about a 25% elliptic cylinder The dif-
ferences in the vortex intentctions are the result of varying

the incidence angle and the rotation sense of the vortices
that comprise the interacting vortex wake. The vortex
interaction is considered for 45 and 90 degrees incidence.
Due to symmemy, a single interaction is considered for the
flow at 90 degrees incidence. At 45 degrees incidence,
two interactions are considered, the difference being the
rotation sense of the vortices in the interacting vortex
wake. The three interactions are describedbelow.

First Interaction, I"= -1.0, _ = 45°: The vortex interaction
is started at t = 0.25, as before. The variation in the lift and

drag coefficients during the vortex interaction are shown
in Figs 13 and 14, respectively. The initial effect of the
vortex interaction is to rapidly reduce the lift on the
elliptic cylinder. The is due to the movement of the
stagnation streamline and therefore, a reduction in the
induced incidence of the elliptic cylinder. A cones_nding
reduction in the drag is seen in Fig 14. The reductions in
the lift and drag are quickly reversed as the vortex
interaction progresses, t = 2.0, and the sawtooth signature
in the lift and drag develop. The sawtooth pattern is
representative ofthepassage of the periodic interacting
vortex wake over the elliptic cylinder. As in the previous
vortex interaction for the circular cylinder, the vortex that
starts at the uppermost position, y = 6.5, convects in a
direction so as to pass closest to the surface of the elliptic
cylinder. During this interaction, the uppermost vortex is
convectedin a direction down and to the right, which is
again toward the stagnation streamline and is caused by
the effects of the interacting vortices below the initial
vortex position. This is clearly seen in the development of
the vortex trajectories of Fig 15 and the development of
the streamlines shown in Fig 16. The strong vortex
interaction seems to occur at t = 6. At this time a change
in the lift, Fig 13, and the drag, Fig 14, is observed. A
spike in the loading before t ffi4.5 and after t = 8.5 is not
present in the lift and drag distribution at t = 6.0 due to the

strong vortex interaction. At t = 8.0, the lift, Fig 13, and
the drag, Fig 14, return to the sawtooth dislyibution prior
to the strong interaction. As in the previous interaction,
the interacting vortex wake has regained the constant
vortex separation, as shown in Fig 16, similar to the initial
distribution of the interacting vortices, and the vortices are
being convected along a curved trajectory. The curved
trajectory is now to the right of the initial distribution, as
shown in Fig 15b. For t > 20.0 the loading on the elliptic
cylinder is periodic. The effect of the vortex interaction
can be seen as the "spikes" in the loading.

The vortex trajectories during the interaction are shown in
Fig 15, and indicate that the initial vortex which starts at
the uppermost position, y ffi6.5isconvectedina direction
down and to the right, as shown in Fig 15a. It is this
vortex that generates the strong vortexinteraction because



it is convectedalongtrajectoriesclosetothestagnation
m'eamlineof thecylinder.ThistrajoctotTwovid_ the
closest approach to the surface of the elliptic cylinder as
i_own in the figure. After this inmaction, the v_ are
convec_ along the curved trajectory _own in Fig 15b.

Development of the streamlines for the vortex interaction
are shown in Fig 16. At the early developments of the
interaction, Figs 16a,16b, and 16c (t ---1.0, t ffi2.0, and t =
3.0), the vortices are aligned in a pane_ similar to _mtof
the initial vortex distribution. When t = 4.0 (Fig 16d) the
vortex started at the uppermost position can be seen

closest to the stagnation streamline. It is this vortex that
will make the closest approach to the cylinder and
generate the strong vortex interaction. At t ffi5.0, the effect
of the adjacont vogtex to the left of the vtgtex started at the
uppermost position is shown to convect this vortex toward
the cylinder. The interacting vortex wake has a profound
effect on the development of the separated wake below the
elliptic cylinder. This is most significant at t ffi 7.0, 8.0,
and 9.0, where three separated vortices are in close
proximity to the lower surface of the elliptic cylinder.
During the developing flow in the absence of the
interacting vortex wake (Fig 5), the shed vortices oscillate
from leading to trailing edge, thereby generating a vortex
street in the wake of the cylinder. This vortex street is
altered significantly during the vortex interaction.

Second Interaction, F ffi1.0, a ffi45°: This vortex inter-
action is calculated because the flow about the elliptic

cylinder at 45 degrees incidence is not symmetric with
respect to the rotation direction of the vortices in the
interacting vortex wake. The vortex interaction is again
started at t = 0.25. The vortex strength is now eqnal to I"=
1.0, for each vortex in the interacting vertex wake. This

corresponds to a counter-clockwise rotating vortex of
magnitude I" - 1.0. The variation in the lift and drag
coefficients during the vortex interaction are shown in
Figs 17 and 18, respectively. During this vortex interac-
tion, the effect of the interacting vortex wake is to sig-
nificantly increase the lift and drag on the cylinder. This is
due to the rotation of the stagnation streamline which
increases the induced incidence of the cylinder. At

approximately t ffi 1.5, the sawtooth patte_ in the lift and
drag can be seen. The pattern is less Immomw_ during
this interaction than the previous interaction because the
effect of the interacting vortex wake is less signif'gant in
comparison with the vonicity generated at the surface of

the elliptic cylinder. The strength of the shed vorticityat

the leading edge of the cylinder increases with incidence
and will dominate the flow near this location. The

sawtooth pattern is fairly consistem for the lift, Fig 17, and
for the drag, Fig 18, up to a time of t = 5.5. At this time t =
5.5, the svrong vortex interaction is occurring, although
notclearfromtheliftanddrag. This strong interaction is
again the result of the convection of the uppermost vortex
due to the influence of the other interacting vortices and

the closest approach of this vortex to the surface of the
cylinder. This can be seen in the vortex trajectories of
Fig 19 and the streamline coutours of Fig 20. Tbe effect of
the interacting vortices during the interaction is to first
au:ekrate the flow around the leading edge of the elliptic

cylinder and to then retard this flow, Figs 20e and 20£
This has a significant effect on the separated vortex wake

generated at that location and, therefore, the vortex wake
below the cylinder.

The variation in the drag coefficient on the cylinder during
the interaction is shown in Fig 18. As in the previous

interaction, Figs 13 and 14, and unlike the interaction of
the vc_x wake with the circular cylinder, Figs 9 and 10,
the lift, Fig 17, and the drag, Fig 18, show similar trends
during this interaction. At the early stages of the
intmgtion, t= 1.0, the drag is sharply increased due to the
interaction, after whichthesawtooth pattern is present, t=
1.5 to t ffi5.0. At t = 5.0, the drag is significantly increased
due to the slrong vortex interaction as was seen in the lift,

Fig 17. Later, the sawtooth pattern in the drag reemerges, t
> 8.0, Fig 18. Later, Fig 18b, the loading on the cylinder
becomes periodic with a Strouhal number similar to that
for the flow with no vortex interaction.

The vortex trajectoriesduringtheinteraction are shown in
Fig 19 and indicate that the vortex which starts at the
uppermost position, y = 6.5, is convected in a direction
down and to the left due to the influence of the other

interacting vortices. It is this initial vortex that generates
the strong vortex interaction because it is convected along
wajectories close to the stagnation streamline of the
cylinder and passes closest to the cylinder surface. After
this vortex passes the cylinder, the interacting vortices are
convected along a curved trajectory, Fig 19b, to the left of
the initial disu-ibution.

Development of the streamlines for the vortex interaction
are shown in Fig 20. At the early developments of the
interaction, Figs 20a, 20b, and 20c (t = 1.0, t = 2.0, and t =
3.0), the vortices are aligned in a pattern similar to that of
the initial vortex distribution and have significantly
increased the induced incidence of the elliptic cylinder.

When t ffi 4.0 (Fig 20d) the vortex that started at the
Wpermost position can be seen as the vortex to the left in
the figure. At t = 5.0 and t = 6.0, this vortex is close to the
surface of the elliptic cylinder and will pass closestto the

cylinder. It is this vortex that contributes to the strong
vortex interaction.

8

Third Interaction, F = 1.0, a = 90°: The variation in the

lift and drag coefficients during the vortex interaction are
shown in Figs 21 and 22, respectively. The effect of the
interaction is to first increase the lift on the elliptic
cylinder, up to t = 6.0, at which time a strong vortex
interaction occurs. The sawtooth pattern in the lift,
indicative of vortex passage, is again present. In



comparingthelift duringthisinteraction,Fig21, with the
lift during the vortex interaction with the circular cylinder,
Fig 9, the current interaction generates a less pronounced
effect on the lift. This is due to the curvaULrCof the

respective cylinders and the effect of the interacting vortex
wake on these surfaces. The variation in the drag during
this interaction is shown in Fig 22. The drag is initially
increased, but only slightly when compared with the drag
for no interaction as shown on the figure. Later, large
spikes in the drag distribution are present at t = 2.5, 3.5,
4.5, and 5.5, representing the passage of the interacting
vortices. These spikes in the drag distribution are due to
the influence of each vortex in the interacting vortex
wake. As each vortex approaches the elliptic cylinder, the

flow at the upper surface is accelerated resulting in a
corresponding reductionin drag.The drag during the
interaction nearly returns to the value for no interaction.
The strong vortex interaction at t = 6.5 disrupts this effect
and suppresses the spike in the drag. At t = 8.0, the slrong
vortex interaction is over and the drag, Fig 22, begins to
return to the dislribution shown prior to the interaction.
For t > 20.0, the flow becomes periodic with a Strouhal
number similar to that for the no-interaction flow.

The vortextrajectoriesduringthe interaction are shown in
Fig23 and indicates that the initial vortexwhichstartsat
theuppermostposition,y= 6.5,isconvectedinadirection
down and totheleftdue totheinfluenceof theother

interactingvortices.Thisvortexpassesclosetotheupper

surface of the cylinder, disrupting the flow at that location,
Fig 23a. The interacting vortices me evenumlly convected
alongacurvedtrajectory,Fig23b,totheleftoftheinitial

vortexdistribution.Closertothecylinder,thevorticesdo

not followa singletrajectory,similarto thatforthe

interaction with the flow about a circular cylinder, Fig 11.
Instead, the vortex trajectories are fanned out near the
surface.

Development of the streamlines for the vortex interaction
me shown in Fig 24. At the early developments of the
interaction, Figs 24a, 24b, and 24c (t = 1.0, t = 2.0, and t ---
3.0), the vorticesme again aligned in a pattern similar to
that of the initial vortex distribution. The effect of the

interacting vortices is to increase the upper surface
circulation around the right side of the cylinder. This
produces the increase in lift, Fig 21, and the corre-
sponding spikes in the drag, Fig 22 for the passage of each
interacting vortex. The strong vortex interaction is shown
for times t = 6.0, Fig 24f when the initial vortex at the

uppermost position passes closest to the cylinder. Figure
24f clearly shows the effect of the interacting vortex wake
on the shed wake below the cylinder when these results

me compared with the flow for no interaction, Fig 7.

9

Conclusions

A method has been developed to model the two-
dimensional interaction between an interacting vortex

wake represented by a t-mite-core model and the viscous
flow around arbitrary bodies. The method solves for the
flow field velocities on a hody-fitted computational mesh
using finite-difference techniques. The viscous flow field
of the two-dimensional body is calculatedon an Eulerian

grid via the velocity/vorticity formulation of the Navier-
Stokes equations.

"I'nemeOmddem_ that the t'mite-core vortex model

is accurate in convecting the interacting vortex wake away
from the body. This will significantly reduce the need for
a free computational mesh away from the body to resolve
the interacting vortex wake. Near the body, the interacting
vortex wake is distributed to the computational mesh to
provide accurate vortex interaction with the flow field.

A simulation of a rotor wake interaction with the flow

about a circular cylinder and a 25% elliptic cylinder at 45
and 90 degrees incidence was shown for Reynolds number
3000. The simulation was considered to address the
interaction of a rotor wake with the cross-section of the

tail boom and empennage components. Results of the
vortex interaction indicate that the presence of a
interacting vortex wake has a profound effect on the flow
field and therefore, the loading on the circular and elliptic
cylinders. The calculation of vortex interactions with the
flow about a circular and an elliptic cylinder were
considered to evaluate general vortex interactions.

The lift and drag on the circular cylinder and the elliptic
cylinder at 90 degrees incidence were significantly
increased due to the interacting vortex wake. The lift on
the circular cylinder during the interaction was increased
signifimmtly and the drag was slightly reduced from that
for no interaction due to the effect of the interacting vortex
wake on the circulation around the cylinder. The drag on
the elliptic cylinder at 90 degrees incidence was sig-
nificantly increased due to the vortex interaction. Spikes
in the drag distribution, representing the passage of the
vortices in the interacting vortex wake were shown. The

magnitudeofthesespikes are significant withrespect to
the drag rise due to the vortex interaction.

Large variations in the loading of the elliptic cylinder at
45 degrees incidence were shown for changes in the
rotation direction of the vortices in the interacting vortex
wake. When the vortices were rotating in a clockwise
direction, the lift and drag on the elliptic cylinder were
significantly reduced during the vortex interaction.
Conversely, when the vortices were rotating in a counter-
clockwise direction, the lift and drag on the elliptic

cylinder were significantly increased during the vortex
interaction. These variations are important in



undemandingtheinteractionof therotorwakewiththe
flowabout empennage components.

The present two-dimensional method has demonstrated
the ability to efficiently compute the two-dimensional
interaction of fmite-core vortex wakes with the flow about

arbitrary bodies. The method is currently being extended
to three-dimensional analysis.
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